

R e s p i r a t o r y System Overview

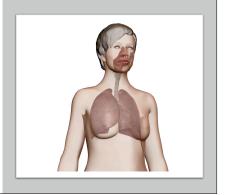
- The process of moving air in and out of the lungs is called pulmonary ventilation.
- Gas exchange between the lungs and the blood is called external respiration.
- Internal respiration exchange gases between the blood and the cells.

Introduction

- Oxygen is essential to every cell and tissue in the body in which it uses it to produce energy necessary to support life
- The respiratory system ensures oxygen is available for other body systems

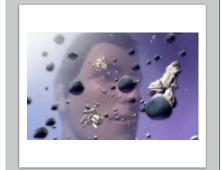
Anatomy of the Respiratory System

Upper respiratory tract


- Nose
- Mouth
- Pharynx

Lower respiratory tract

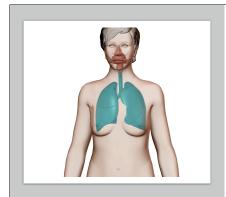
- Trachea
- Bronchi
- Lungs


Divisions of the Respiratory System

- Nasal Cavity
- Oral cavity and pharynx
- Larynx
- Trachea
- Lungs

Upper Respiratory system

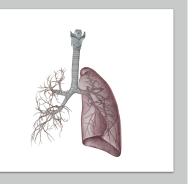
- Air that enters the nose is filtered, moistened and warmed by structures in the respiratory mucosa
- Hairs filters out large dust particles


The Pharynx

- The pharynx is divided into three parts: the nasopharynx, oropharynx, and laryngopharynx
- Oral cavity
- Esophagus

The Larynx

- The larynx is often called the voice box
- Other function of the larynx is to be an air passageway between the pharynx and the trachea


Lower Respiratory System

- Trachea
- Bronchi
- Bronchioles
- Lungs

The Trachea and Bronchi

- The trachea conveys air between the upper and lower respiratory structures
- There is between 15 and 20 C shaped rings that stop the trachea from collapsing or over expanding
- The trachea divides into the bronchi and bronchioles in the lungs

Trachea, Bronchi and Bronchial Tree

- Trachea
- · Primary bronchi
- Secondary bronchi
- Tertiary bronchi
- Bronchioles

Blood Supply to the Lungs

- Hilum
- Lung
- · Bronchi and bronchioles
- · Circulatory vessels

Alveoli and Gaseous Exchange

- Oxygen in the air is exchanged for waste carbon dioxide from the bloodstream.
- This process of external respiration takes place in hundreds of millions of alveoli [air sacs].
- Inhaled oxygen diffuses from the alveoli into the pulmonary capillaries into the bloodstream.
- Carbon dioxide from oxygen depleted blood diffuses from the capillaries into the alveoli

Dalton's Law [Law of Partial Pressure]

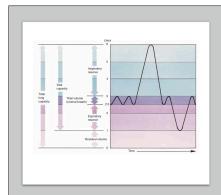
- Gas exchange occurs in the lungs as oxygen diffuses from the alveoli into the blood stream and carbon dioxide diffuse into the alveoli.
- Oxygen diffuse from the alveolus into the pulmonary capillary. Carbon dioxide diffuses out of the capillary and into the alveoli

Muscles of Inhalation

- Diagram
- External intercostals
- Sternocleidomastoid
- Scalenes
- Pectoralis minor
- Serratus anterior

Muscles of Exhalation

- Diaphragm
- · Internal intercostals
- · Transversus thoracis
- Abdominal muscles



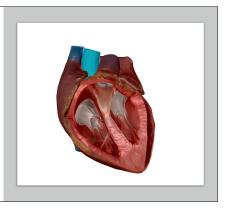
Muscle	Action
Diaphragm	Contracts increasing thoracic volume
External Intercostals	Draws ribs upwards increasing volume of thoracic cavity for inspiration.
Internal Intercostals	Draws ribs downwards decreasing thoracic volume for expiration
External Oblique Internal Oblique Transversus Abdominis Rectus Abdominis (Abdominals)	Pull abdominal wall inwards. Increases intra-abdominal pressure. Causes decrease in thoracic volume. Displace rib cage down and inward
Scalene Anterior, Medius, Posterior	Raises the first rib for inspiration (A&M), raises second rib for inspiration (P)
Sternocleidomastoid	Raises first rib and sternum 'pump handle' action

Boyle's Law and Pulmonary Ventilation

- During normal inhalation, the diagram and external intercoastal muscles contract and the ribcage elevates
- During normal exhalation, the muscles relax, and the lungs become smaller with the pressure inside them rises and the air is expelled.
- Boyles law explains this relationship between volume and air pressure

Lung Volume

- Tidal volume
- · Minute respiratory volume
- · Inspiratory reserve
- Expiratory reserve
- Vital capacity
- Residual air



Breathing Rate and Regulation

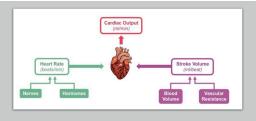
- The rate of normal breathing is 12-15 breaths per minute
- When the body uses more oxygen or holds too much carbon dioxide sensors in the circulatory system called chemoreceptors send signals to the brain

The Heart

- •There are 4 chambers in the heart.
- •Right Atrium
- •Right Ventricle •Left Atrium
- Left Ventricle

Circulatory System

Systemic


Sends O₂ enriched blood on from the Y and carries it around the body and returns back to the Y

Pulmonary

Sends CO₂ enriched blood from the Y to the lungs and brings it back to the Y with fresh O₂

Cardiac Output (Q)

- (Q) is the volume of blood pumped out by the left ventricle in one minute
- Cardiac Output (Q) = SV x HR

Blood Pressure

BP = blood flow x resistance

Systolic BP is the force with which the blood is pushing against the artery walls when the ventricles are contracting

Diastolic BP gives valuable information about the resistance of the blood vessels

